Multiple Product Areas Join Forces on Pipeline Project

[fusion_builder_container hundred_percent=”no” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” overlay_color=”” video_preview_image=”” border_size=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=””][fusion_builder_row][fusion_builder_column type=”1_3″ layout=”1_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” undefined=”” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding_top=”10px” padding_right=”10px” padding_bottom=”10px” padding_left=”10px” margin_top=”” margin_bottom=”” animation_type=”fade” animation_direction=”down” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Project

New Pipeline and Injection Facilities

Location

Texas

[/fusion_text][fusion_separator style_type=”none” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” sep_color=”” top_margin=”15px” bottom_margin=”15px” border_size=”” icon=”” icon_circle=”” icon_circle_color=”” width=”” alignment=”center” /][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Background

A new midstream energy company called on EN Engineering for a wide array of services supporting a new pipeline system and injection facilities.

[/fusion_text][/fusion_builder_column][fusion_builder_column type=”2_3″ layout=”2_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Challenges

As a new company, the client had not yet developed comprehensive project procedures, so one challenge involved working together to establish new processes and standards. In addition, the project had an aggressive timeline and required the team to work at an accelerated pace.

Solutions

EN Engineering provided project management, engineering, and design services for a new pipeline system consisting of more than 70 miles of 8” and 12” diameter pipeline, as well as five new injection facilities for multiple third-party producers.

Experts from EN Engineering’s entire service portfolio came together to successfully complete the project. The pipeline design team provided oversite of the pipeline routing as well as development of engineering design details, while a facility team provided full mechanical, electrical, civil, and structural design packages, along with hydraulic and surge analysis.

Environmental experts oversaw an environmental survey and provided recommendations for both compliance measures and installation best practices along the pipeline. Several scenarios for flow modeling were evaluated by the integrity team, who also provided recommendations for emergency flow restricting device (EFRD) valves. GIS services were utilized to evaluate alternate pipeline routes and make a commercial recommendation. Designs for cathodic protection were provided by the corrosion team. Finally, procurement experts provided comprehensive support on all equipment, material, and labor contracts, from specification development to expediting and tracking deliveries.

EN Engineering also provided several specialty services, including in-house HAZOP facilitation and shop inspection services, and managed geotechnical, environmental survey, and mill inspection subcontractors. The automation team developed the control philosophy for the injection facilities and interfaced with third-party programmers and PLC integrators.

The EN Engineering team was instrumental in guiding industry best practices and helping the client develop new procedures and standardizations. In addition, they facilitated communications despite several changes in client stakeholders at critical stages during front-end loading and worked at an accelerated pace to meet project deadlines.

“Experts from EN Engineering’s entire service portfolio came together to successfully complete the project.”

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Plant Expansion in Phases

[fusion_builder_container hundred_percent=”no” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” overlay_color=”” overlay_opacity=”0.5″ video_preview_image=”” border_size=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=””][fusion_builder_row][fusion_builder_column type=”1_3″ layout=”1_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” undefined=”” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”10px 10px 10px 10px” margin_top=”” margin_bottom=”” animation_type=”fade” animation_direction=”down” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Project

Plant Expansion – Petroleum Product Packaging
Location

Texas

[/fusion_text][fusion_separator style_type=”none” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” sep_color=”” top_margin=”15px” bottom_margin=”15px” border_size=”” icon=”” icon_circle=”” icon_circle_color=”” width=”” alignment=”center” /][fusion_text]

Background

A petroleum product packaging client requested a plant expansion, impacting 62,000 square feet of their existing property. The total area impacted required demolition of existing assets, grading reconstruction, underground piping modifications, and the installation of three new buildings. The buildings included a pallet storage building (8,000 sf) with a mezzanine and underhung crane, a 3,800 square-foot canopy area, and a production plant expansion (12,800 sf) with loading docks.

[/fusion_text][/fusion_builder_column][fusion_builder_column type=”2_3″ layout=”2_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”” dimension_margin=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Challenges

The client’s property is landlocked and congested with truck traffic, which necessitated a design to accommodate construction in phases. The property drainage was dependent upon underground infrastructure at the adjacent property, which required coordination in the design and construction. The design of the production plant expansion required intense coordination with the building vendor and contractor. There were multiple issues with marrying the new building to the existing that required extraordinary engineering considerations.

Solutions

An EN Engineering team was dedicated to the project, with a Senior Project Manager as the single point of contact, a request made by the client. Initially EN Engineering subcontracted with a geotechnical firm to verify the site conditions, and completed a 3D scan of the site. EN Engineering worked with plant operations to develop a feasible plan for the phasing of construction. In coordination with a pre-engineered building vendor, EN Engineering developed a detailed design package for the complete plant expansion. The project, which tallied more than 2,000 man hours, was efficiently supported by staff from EN Engineering offices in League City, TX and Catlettsburg, KY.

“The design of the production plant expansion required intense coordination with the building vendor and construction in phases.”

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Sample Stations Designed and Installed to Resolve Deficiencies

[fusion_builder_container hundred_percent=”no” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” overlay_color=”” overlay_opacity=”0.5″ video_preview_image=”” border_size=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=””][fusion_builder_row][fusion_builder_column type=”1_3″ layout=”1_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” undefined=”” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”10px 10px 10px 10px” margin_top=”” margin_bottom=”” animation_type=”fade” animation_direction=”down” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Project

System design, procurement and construction support for sample stations

Location

Texas

[/fusion_text][fusion_separator style_type=”none” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” sep_color=”” top_margin=”15px” bottom_margin=”15px” border_size=”” icon=”” icon_circle=”” icon_circle_color=”” width=”” alignment=”center” /][fusion_text]

Background

Our client, the second largest refinery in the U.S., surveyed more than 700 existing sample stations in their various refinery units and discovered that over 400 had environmental and/or safety deficiencies. The client prioritized the stations according to the severity of the concerns and called on EN Engineering to execute engineering, design, procurement and construction for the $31 million project to replace deficient sample stations.

[/fusion_text][/fusion_builder_column][fusion_builder_column type=”2_3″ layout=”2_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”” dimension_margin=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Challenges

The sample stations, which were located in every production unit of the refinery, had to be replaced while the refinery was in operation, or during scheduled turnarounds. In addition, many of the sample stations were high priority and required demanding replacement deadlines. The design team demonstrated flexibility by responding to ongoing changes in priorities, turnaround schedules, operational needs, and safety concerns throughout the project.

Solutions

A dedicated team was embedded at the client’s site to work with plant personnel and executed the project from concept to installation with additional support from EN Engineering employees across the country. The team collected the necessary information and developed detailed plans to install the sample stations. The required documentation included P&IDs, data sheets, isometric drawings, installation details, operational manuals, and spare parts lists. EN Engineering also developed purchasing and tracking specifications for the procurement of each sample station and purchased $1.4 million in materials and equipment. Following procurement, the EN Engineering team provided field construction support. The project required more than 35,000 hours, and the 400 sample stations were designed, installed, and operational ahead of the challenging deadlines.

“Many of the sample stations were high priority and required demanding replacement deadlines.”

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Fall Protection Hazards Mitigated to Enhance Safety

[fusion_builder_container hundred_percent=”no” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” overlay_color=”” overlay_opacity=”0.5″ video_preview_image=”” border_size=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=””][fusion_builder_row][fusion_builder_column type=”1_3″ layout=”1_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” undefined=”” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”10px 10px 10px 10px” margin_top=”” margin_bottom=”” animation_type=”fade” animation_direction=”down” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Project

Platform Upgrade for Fall Hazard Remediation

Location

Catlettsburg, KY

[/fusion_text][fusion_separator style_type=”none” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” sep_color=”” top_margin=”15px” bottom_margin=”15px” border_size=”” icon=”” icon_circle=”” icon_circle_color=”” width=”” alignment=”center” /][fusion_text]

Background

Working together, LJB, Inc., a firm specializing in safety and environmental engineering, and EN Engineering offer expert Fall Hazard Analysis and Remediation services. The client, one of the largest crude oil refiners in the U.S., worked with LJB to complete a Fall Hazard Analysis, and EN Engineering followed up by performing the detailed engineering and design of the corrective actions identified.

[/fusion_text][/fusion_builder_column][fusion_builder_column type=”2_3″ layout=”2_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”” dimension_margin=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Challenges

The project required buy in from a variety of personnel, including engineering, maintenance, construction, and operations, so ongoing and thorough communication was critical for success.

Solutions

A comprehensive Fall Hazard Analysis was completed to identify deficiencies throughout the refinery. Following a feasibility study to confirm the deficiencies had not already been mitigated and the egress items were required for operations, EN Engineering developed and presented cost projections to the client. Upon budget approval, the team performed detailed engineering and design to correct the issues identified by the Fall Hazard Analysis, including the design of platforms, ladders, handrailing, grating, and swing gates.

EN Engineering has helped the client organize the project to produce a steady flow of engineering deliverables that coincide with construction schedules. Each segment of work has been completed on budget and on time. The client can now be assured that the fall protection deficiencies have been, or will soon be, corrected and they are in compliance with OSHA standards.

“The team performed detailed engineering and design to correct the safety deficiencies identified by the Fall Hazard Analysis.”

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Pipeline Expansion Completed with Minimal Disruption to Operations

[fusion_builder_container hundred_percent=”no” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” overlay_color=”” overlay_opacity=”0.5″ video_preview_image=”” border_size=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=””][fusion_builder_row][fusion_builder_column type=”1_3″ layout=”1_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” undefined=”” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”10px 10px 10px 10px” margin_top=”” margin_bottom=”” animation_type=”fade” animation_direction=”down” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Project

Pipeline Replacement and System Expansion

Location

Illinois, Indiana, and Michigan

[/fusion_text][fusion_separator style_type=”none” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” sep_color=”” top_margin=”15px” bottom_margin=”15px” border_size=”” icon=”” icon_circle=”” icon_circle_color=”” width=”” alignment=”center” /][fusion_text]

Background

A midstream pipeline company called on EN Engineering to provide a FEED study, detailed engineering design, and construction support for the replacement and expansion of their pipeline system.

[/fusion_text][/fusion_builder_column][fusion_builder_column type=”2_3″ layout=”2_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”” dimension_margin=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Challenges

In addition to a demanding speed-to-market timeline, the client desired to keep the pipeline system and terminals operational and avoid extended shutdowns during construction. A key component of the design was keeping the terminals operational while connecting the new tankage, headers, pumps, and meters.

Solutions

EN Engineering provided design for two grass roots pump stations, as well as project management, project scoping, cost estimates, and detailed design and construction support. The project also included total redesign, rebuild, and expansion of an existing terminal infrastructure, with the goal of keeping the terminal operational with only a 4-day shutdown.

EN Engineering designed an origin pump station, including connection to the re-designed terminal, a grass roots custody transfer meter facility, and installed 197 miles of 36-inch pipeline. The project also included design of a new launcher and receiver site to accommodate the interconnection of two pipelines and allow tight line flow between two pipelines.

The EN Engineering team finished the work with minimal disruption to operations and met an extremely demanding timeline. The project progressed from initial concept to full operation within two years.

In addition to a demanding speed-to-market timeline, the client desired to keep the terminal operational and avoid disruption to existing operations during construction.

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Pipeline Terminal Expansion

[fusion_builder_container hundred_percent=”no” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” overlay_color=”” overlay_opacity=”0.5″ video_preview_image=”” border_size=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=””][fusion_builder_row][fusion_builder_column type=”1_3″ layout=”1_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” undefined=”” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”10px 10px 10px 10px” margin_top=”” margin_bottom=”” animation_type=”fade” animation_direction=”down” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Project

Expand an existing system to increase capacity and meet new demand requirements

 

Location

Texas

[/fusion_text][fusion_separator style_type=”none” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” sep_color=”” top_margin=”15px” bottom_margin=”15px” border_size=”” icon=”” icon_circle=”” icon_circle_color=”” width=”” alignment=”center” /][fusion_text]

Background

EN Engineering provided the initial FEED study for a major crude oil pipeline client, followed by the detailed engineering design and construction support for the extension of a 350-mile pipeline system that included modifications and expansion of existing terminals, pump stations and meter stations, and the addition of grassroots terminals and pump stations.

[/fusion_text][/fusion_builder_column][fusion_builder_column type=”2_3″ layout=”2_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”” dimension_margin=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Challenges

The expansion project required both upgrading older, existing infrastructure and grassroots facilities to meet the new flow rate and design conditions. All of the work had to be completed without impacting current operations, while moving substantially higher volumes through an existing pipeline system under the limitations of the operating pressures.

Solutions

The project included engineering design, construction support, and procurement for the following facilities:

  • Grassroots terminal including one 150 kbl and one 250 kbl tank, six truck unloading ACT units and manifold system, and interconnection to an existing origin pump station and electrical controls.
  • Expansion of existing terminal with a new grassroots mainline pump station with two 5,500 hp VFD pumping units, DRA skid, surge protection, six truck unloading ACT units, one 150 kbl storage tank, 700 hp vertical can booster pump, custody transfer metering, new substation, and new electrical and control building.
  • Terminal expansion with new grassroots pump station with two 5,000 hp VFD pumping units, DRA skid, surge protection, new connection to central manifold connecting to the existing 16 tanks, 700 hp vertical can booster pump, repair of tank lines, custody transfer metering, new substation, and new power and control building.
  • Replacement of one mainline pump station with two 4,000 hp VFD pumping units associated piping, surge protection and facilities, DRA skid, electrical control building, and new substation.
  • Hydraulic modeling for the design modification of existing facilities and required grassroot facilities with the utilization of DRA to optimize the number of new pump stations.
  • Surge analysis to determine protection requirements for the pipeline, terminals and meter stations for the new flow conditions, and design of the new safety devices to protect the pipeline assets. The protection devices included relief valves in terminals, piping to operational tankage, and addition of relief valves and surge tanks at the meter stations.

The challenging expansion project, completed on time, increased capacity and met new demand requirements.

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Boiler System Improvements to Enhance Efficiency

[fusion_builder_container hundred_percent=”no” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” overlay_color=”” overlay_opacity=”0.5″ video_preview_image=”” border_size=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=””][fusion_builder_row][fusion_builder_column type=”1_3″ layout=”1_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” undefined=”” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”10px 10px 10px 10px” margin_top=”” margin_bottom=”” animation_type=”fade” animation_direction=”down” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Project

Boiler System Improvements to Enhance Efficiency

 

Location

Kentucky

[/fusion_text][fusion_separator style_type=”none” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” sep_color=”” top_margin=”15px” bottom_margin=”15px” border_size=”” icon=”” icon_circle=”” icon_circle_color=”” width=”” alignment=”center” /][fusion_text]

Background

EN Engineering partnered with a major barge cleaning and marine repair facility to assess their steam system and recommend economic efficiency improvements.

[/fusion_text][/fusion_builder_column][fusion_builder_column type=”2_3″ layout=”2_3″ spacing=”” center_content=”no” hover_type=”none” link=”” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_position=”left top” background_repeat=”no-repeat” border_size=”0″ border_color=”” border_style=”solid” border_position=”all” padding=”” dimension_margin=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”no”][fusion_text]

Challenges

The client had several package boilers that were used for heating water to wash barges and for boiler feedwater de-aeration. At times, only one boiler was operated in idle while two other boilers were not running. The client requested a detailed study of the boilers and steam system usage to determine if hot water heaters could economically be used to heat barge wash water instead of the steam from the package boilers.

Solutions

EN Engineering conducted a front-end engineering design (FEED) study of the package steam boilers and steam distribution usage. The study included the boiler steam production, the tankage heat losses, the transfer pumps horsepower requirements, the steam-to-water plate heat exchanger analysis, the heat loss from the steam piping, the barge wash water flow and cleaning frequency, the cost and installation of any new equipment such as new hot water heaters, and the demolition and removal of existing equipment. A FEED cost analysis was completed and a discounted cash flow (DCF) rate of return on investment (ROI) was done to determine if the project met the client’s internal DCF-ROI hurtle rate to proceed with the project. A detailed interactive Excel program with graphics was developed to perform engineering and economic analyses.

For the cost analysis, EN Engineering provided the cost of the detailed design, including piping design, electrical design, PLC programming, equipment specifications, as well as procurement assistance and on-site construction support to meet the customer’s goal of improving the economical efficiency of the system. The EN Engineering team presented a detailed design and cost estimate to the client, and the analysis proved that the existing system was more economical to operate than investing capital for a different system. The DCF-ROI fell short of the client internal hurtle rate.

A detailed FEED study and cost analysis proved the existing system was more economical than investing in a new system.

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]